

产品使用说明书 OPERATION MANUAL

常州同惠电子股份有限公司 2400-624-1118

地址: 江苏省常州市新北区天山路3号(213022) 电话: 0519-85132222 传真: 0519-85109972 Http://www.tonghui.com.cn Email: sales@tonghui.com.cn

TH2281/A/B 型 超高频数字毫伏/功率表

TH2281 Ultrahigh Frequency Digital Millivoltmeter / Power Meter

V 1.4

手册印刷历史:

印刷历史反映了手册的修订状态,它包括版本号和出版日期,该手册将不断完善善以利于用户更好的了解和使用。

本手册中可能存在的错误或遗漏,仪器功能的改进和完善,硬件技术的更新和 固件的升级,将及时在手册中作相应的调整和修订,恕不另行通知。

TH2281/A/B	用户手册	Ver1.0	 2009-12
TH2281/A/B	用户手册	Ver1.1	 2010-06
TH2281/A/B 月	11户手册	Ver1.2	 2011-01
TH2281/A/B 月	 	Ver1.3	 2011-08
TH2281/A/B 月	 	Ver1.4	 2021-11

声明:本公司可能对该产品的性能、功能、软件、结构、外观、附件、包装 以及用户手册等进行的完善和提高,恕不另行通知!如有疑惑,请与本公司联系。

目	录

第一章	概述	1
1.1	概这	21
1.2	使月	月条件2
	1.2.1	电源2
	1.2.2	环境温度与湿度2
1.3	体利	只与重量2
1.4	安全	全标记及注意事项2
1.5	开新	育检查3
1.6	标さ	3
1.7	保修	٤4
第二章	TH2281 💈	型数字毫伏/功率表简介5
2.1	简子	۲5
2.2	前面	币板简述6
	2.2.1	屏幕指示信息7
	2.2.2	前面板菜单一览8
	2.2.3	前面板菜单参考8
	2.2.4	菜单操作说明9
2.3	后面	币板介绍10
2.4	开材	1准备及开机状态10
	2.4.1	连接电源10
	2.4.2	开机程序11
	2.4.3	高压线路测量的安全注意事项11
	2.4.4	开机缺省状态12
	2.4.5	预热时间12
2.5	显示	示屏13
第三章	基本测	量14
3.1	开如	ີ່ສໍ14
3.2	电归	医测量和功率测量14
3.3	选择	译第二显示15
	3.3.1 操	作使用15
3.4	数学	运算功能15
	3.4.1 Per	cent
	3.4.2 dB	计算17
	3.4.3 dBi	n 计算18
第四章	测量选项	Į19
4.1	测量	<u> </u>
	4.1.1	量程19

	4.1.2	相对运算(Relative)	20
	4.1.3	速度(Rate)	20
4.2	触发	支操作	21
	4.2.1	触发流程	21
4.3	最ナ	大最小值(MAX/MIN)	22
4.4	极阳	灵比较测量(Compare Operations)	23
	4.4.1	打开极限比较测量(Enabling compare)	23
	4.4.2	设置极限比较范围(Setting Compare Limit Values)	23
4.5	系约	充应用(System Operations)	24
	4.5.1	蜂鸣器控制(Beep)	24
	4.5.2	按键音(Key Sound)	24
	4.5.3	自检(Self-test)	25
	4.5.4	校准(Calibration)	25
第五章	远程操作		26
5.1	选择	释一种接口	26
	5.1.1	RS-232	26
	5.1.2	GPIB	27
5.2	RS-	232 接口说明及操作	27
	5.2.1	RS-232 接口简介	27
	5.2.2	RS-232 操作	29
5.3	GPI	B 接口说明及操作	31
	5.3.1	GPIB 总线	31
	5.3.2	GPIB 接口功能	33
	5.3.3	设置 GPIB 地址	33
	5.3.4	通用总线命令	34
5.4	数排	居格式	34
第六章	SCPI 命令	·参考	35
6.1	命令	ݤ结构	35
6.2	命令	⟩语法	35
	6.2.1	命令关键字和参数:	35
	6.2.2	命令关键字缩写规则	37
	6.2.3	命令结构基本规则:	37
	6.2.4	多重命令规则	38
	6.2.5	命令路径规则	38
6.3	命令	⋧参考	39
	6.3.1	DISPlay 子系统命令	39
	6.3.2	FUNCtion 子系统命令	40
	6.3.3	VOLTage 子系统命令	40
	6.3.4	HOLD 子系统命令	42

6.3.5	TRIGger 子系统命令	43
6.3.6	FETCh 子系统命令	44
6.3.7	共命令	44
附录 A		45
介绍		45
技术说明		45
附录 B		48
程序举例		48

第一章 概述

感谢您购买和使用我公司产品。在您使用本仪器前,首先,请根据说明书中本章的1.5 开箱检查 一节的事项进行确认,若有不符请尽快与我公司联系,以维护您的权益。

假如您阅读完本手册后仍有疑问,请您联系当地的经销商或直接致电我公司 的工程师,进行进一步的洽询。

1.1 概述

TH2281/A/B 型为 4%位双 VFD 显示 9kHz[~]3GHz 超高频数字交流毫伏/功率表, 能同时测量电压和功率,并能同时显示测量值及运算值。采用智能化微处理器控 制技术、优良的放大器电路和 A/D 线性检波器使测量电压的固有误差优于 2%。贴 片生产及装配工艺使毫伏/功率表具有体积小、重量轻、稳定可靠性高、测量速度 快、频率响应误差和驻波系数小等优良性能。

TH2281/A/B有很宽的测量范围:

•4%位双读数的清晰 VFD 显示。

•测量电压范围: 1mV~10Vrms。

•测量功率电平: -47dBm~33dBm(0dBm=1mW, 默认 50Ω负载)

•测量功率: 20nW²2W (负载电阻 R=50 Ω, 负载电阻可设)

• 毫伏/功率表输入电阻:低频时同轴检波器与探头开路阻抗≥100kΩ。

•Max, Min 记录功能及百分比(percent),菜单功能设置计算。多功能可组 合双数字 VFD 显示。

•不同信号源的源阻抗设置测量功率和 dBm 值。

• 自动和手动量程转换功能。

编程语言及控制接口:毫伏/功率表提供 SCPI 编程控制语言,提供 USB(标配)/RS-232C(选配)控制接口;还提供 GPIB IEEE488 接口(选配)。

1

1.2 使用条件

1.2.1 电源

电源电压: 220V±10% 电源频率: 50Hz/60Hz±5% 功耗: ≤ 10VA

1.2.2 环境温度与湿度

正常工作温度: 0℃~40℃, 湿度 ≤ 90%RH

1.3 体积与重量

体积 (W×H×D): 225mm×100mm×360mm 重量: 约 3 Kg

1.4 安全标记及注意事项

仪器上的 ⚠️标记,表示使用者必须参考手册上的操作指示后再操作。

仪器上的 全标记,表示端子上可能会有比较高的电压,需留意并避免人员直接接触。

仪器上有 ●标记,表示为接地。

本手册中有**警告**(WARNING)标记之处,表示高压危险,可能会造成使用人员受 到伤害,甚至死亡。因此,希望使用者在操作前仔细阅读本手册中的每一个操作 步骤,以确保自己的安全。

本手册中有**注意**(CAUTION)标记之处,是提醒操作者,若未按照操作说明使用, 很有可能会造成仪器的损坏,因这种疏忽所造成仪器损坏的维修和更换,不在厂 家保修范围之内。

1.5 开箱检查

TH2281 在出厂前,已针对机体部分及电气方面的特性做过仔细的检验。拆箱 后,请检查机体是否有因运送而造成的明显损伤。若有任何损伤,请立刻通知运 送单位,安排更换。此外,请保留厂家的纸箱,以便日后可能需要再搬运时使用。 每一台 TH2281 都应包含下列物品:

•	TH2281/A/B 超高频数字交流毫伏/功率表	一台
•	射频探头 TH19003	一个 (TH2281/B)
•	同轴检波器 TH19004	一个(TH2281/A)
•	50Ω同轴三通 TH19005	一个 (TH2281/B)
•	50Ω同轴终端精密负载 TH19006	一个(TH2281两个)
•	电源线	一根
•	500mA 保险丝	二只
•	TH2281 使用手册	一份
•	产品合格证	一张
•	测试报告	一份
•	保修卡	一张
•	客户所订购的附件	

用户收到仪器后,请开箱检查并核对以上物品,若发生遗缺,请立即与本公 司或经销部门联系。

注:本仪器标配 USB_DEV 接口, RS232C 与 IEEE-488 接口为选件, 需另行购买。

1.6 标志

每台仪器面板或铭牌上有下列标志:

- 制造厂名或商标
- 产品名称和型号
- 产品编号和制造年月
- 制造计量器具许可证标志和编号
- 测试端标志

1.7 保修

保修期:使用单位从本公司购买仪器者,自公司发运日期计算;自经营部门购买者,自经营部门发运日期,保修期二年。保修应出具该仪器保修卡。保修期内,由于使用者操作不当而造成仪器损坏的,维修费用由用户承担。仪器由本公司负责终生维修。

本仪器维修须专业技术人员进行维修;维修时请不要擅自更换仪器内部各器件;对仪器维修后,需重新计量校准,以免影响测试精度。由于用户盲目维修, 更换仪器部件造成仪器损坏不属于保修范围,用户应承担维修费用。

仪器应防晒、防湿,应在说明书中所述的环境中正确使用仪器。

长期不使用仪器,应将仪器用出厂时包装箱包装封存。

4

第二章 TH2281 型数字毫伏/功率表简介

2.1 简介

TH2281 型 4%超高频数字交流毫伏/功率表是一种快速、精确的交流电压测试仪器,简洁的前面板设计使您能快捷地得到所需测量功能,它固有的测试平台和系统特性,无论对您现在和将来的电压测量需要,该表将成为一个理想的测量解决方案。 方便的测试平台特性:

- 高亮度的真空荧光管双显示

- 内置数学运算功能
- 设置不同阻抗的信号功率和 dBm 相对值的测量
- 手动设置的读数保持功能
- 便携方便的外形设计

灵活的系统特性:

- USB-DEV 接口
- IEEE 488 接口
- 标准的程序语言 SCPI
- 读数速率 25 读数每秒
- COMP 比较测试带有 HI/IN/LO 信号

2.2 前面板简述

TH2281 的前面板如下图 1-1 所示。该图包括一些重要简短的信息应该在操作仪器之前浏览的。

图 1-1

- 1. 商标及机器型号标识。
- 2. 显示区: 双屏显示, 上为主显, 下为副显。
- 功能键
 选择测量功能:交流电压有效值(V)、电压峰峰值(Vp-p)、功率(W)、功率
 电平(dBm)、电压电平(dBV、dBmV、dBuV)、相对测量值(dB)。
- **4.** GPIB 接口地址状态指示灯。 提示当前仪器选择的接口为 GPIB (灯亮)或 USB/RS232C (灯灭)。
- 5. 电源开关
- 6. 菜单与量程操作键

①菜单操作键

(Shift) + (Esc)	打开/关闭菜单
	在同一级菜单移动可选项
	在同一级菜单移动可选项
	移动菜单到上一级
	移动菜单到下一级
Auto (ENTER)	保存(Enter)"参数"级的参数改变
Esc	在数值设置时,取消(Esc)数值的设定,回到"命令"级
②量程和方向键	
	在第二显示打开后选择副参数组合显示
	在第二显示打开后选择副参数组合显示
	移动到上一个高量程

	移动到下一个低量程
Auto	使能/取消自动量程

- 数学键 打开或关闭数学功能(Rel /%, Max/Min/Comp, Hold)
- 8. 多功能按键区 ①速度和双显开关 2nd, (Rate) 依次设置仪器测量速度为 Fast, Medium 和 Slow. (Shift) + (Rate) 打开和关闭第二显示。 ② Trig/Hold 键 (Trig) 从前面板触发一次测量 (Shift) + (Trig) 锁定一个稳定的读数 ③ Shift/Local 键 (Shift) 使用该键访问上档键 (Shift) (Local) 取消 RS232C 远程控制模式 **9.** 输入插座
 - 注意:输入单元(TH19003 与 TH19004)限制电压 AC≤14V RMS(100kHz), DC<50V,超过此限压而导致仪器的损坏,则不在产品保修范围之内。
 - 2.2.1 屏幕指示信息

- TRIG 处于单次触发状态
- HOLD 读数保持功能打开
- AUTO 自动量程状态指示
- REL 相对运算功能
- CH1、CH2 通道指示
- COMP 极限比较测试功能打开

- HI IN LO 极限比较测试上超,合格,下超指示
- RMT 处于远程控制模式
- AUTO 自动量程状态指示
- MAX MIN Max/Min 功能下最大最小值指示
- ERR 检测到硬件或远程控制错误
- SHIFT 第二功能键有效

2.2.2 前面板菜单一览

TH2281 的菜单以三级 (菜单、命令、参数) "top-down" 树形结构被组织。

B: TRIGger MENU

1: TRIG MODE \rightarrow 2:HOLD WIN \rightarrow 3:HOLD CNT

C: SYStem MENU

1:BEEP STR → 2:KEY SONG → 3:BAUD RATe → 4:Tx TERM →5:INTERFACe→6:GPIB ADDress

2.2.3 前面板菜单参考

A: MATH MENU

1:COMP HI	为 COMP 设置上限
2:COMP LO	为 COMP 设置下限
3:PERC REF	为 PERCENT 设置参考值
4:dB REF	调用或设置存储在寄存器中 dB 参考值
5:dBm Zx	调用或设置存储在寄存器中负载参考值

B: TRIG MENU

1:TRIG MODE	选择触发模式(IMM/MAN/BUS)
2:HOLD WIN	设置读数保持的误差范围
3:HOLD CNT	设置读数保持的数据个数
C: SYS MENU	
1:BEEP STR	打开或关闭蜂鸣器功能
2:KEY SONG	打开或关闭按键声音
3:BAUD RAT	选择 RS232C 接口的波特率
4:TX TERM	设置 RS232C 接口传输时的结束符(LF 或 CR)
5: INTERFAC	选择转接接口类型(USB or GPIB)
6:GPIB ADD	设置本机 GPIB 转接口地址(0 [~] 30)(只有选择了 GPIB 接
	口才会出现此选项)。

2.2.4 菜单操作说明

关于如何使用前面板菜单,该节做了一个简要的指导说明。我们建议用户花几 分钟时间去熟悉并掌握菜单的结构和操作。

菜单被设计为由上到下的三级(菜单(Menus),命令(Commands),参数(Parameters))树形结构。您可以使用上(▲)或下(▼)键移动菜单树从一级移动到下一级;使用左(▲)或右(▶)去浏览三级菜单中任何一级的几个同级的选项。

• 打开菜单, 按 (Shift) + (Esc) (Menu)键.

• 关闭菜单, 按 (Shift) + (Esc (Menu), 或者按任何一种功能键或数学功能 键.

• 确认执行一个菜单命令,按 (Enter)键.

说明: 当在"菜单 (MENU)"级时,如果你按下 ▲,你不能再回到更高级的 菜单;同样当在"参数 (Parameter)"级时,如果按下 ▼,也不能到更下一级的 菜单。

2.3 后面板介绍

TH2281 的后面板如图 2-2 所示,本节包含许多测量操作前需了解的重要信息。

1. USB-DEV 接口

连接作为以 USB 接口操作之用,必须使用转接连通的 USB 电缆。

2. RS232C 接口

连接作为以 RS-232 接口操作之用,必须使用转接连通的 DB-9 电缆。 3. 接地

仪器的接地端。

4. GPIB 接口

连接作为以 GPIB 接口操作之用,必须使用转接连通的 GPIB 电缆。

5. 铭牌

记录仪器的机号。

6. 电源插座

交流电源的输入端,可以使用于交流电压 110V/220V±10%, 50Hz/60Hz±5%。

2.4 开机准备及开机状态

2.4.1 连接电源

(1). 连接电源前,应保持供电电压在 198~242V,并且频率在 47.5~52.5Hz 的条件下工作。

- 注意:如果因为使用错误电源而导致仪器的损坏,则不在产品保修范围之内。
- (2). 插入电源线前,务必先确认前面板的电源开关是在关的状态。
- (3). 将电源线连接至仪器后面板的交流电源输入端和三孔交流电源的输出端(务必是有接地线的交流电源)。
- 警告: 仪器自带的三孔电源线有一个独立的接地端线,所用的电源必须是三孔 的,而且有接地的,否则,可能会因电击而导致人员的死亡。
- (4). 按下仪器前面板的开关,以打开仪器,准备操作。

2.4.2 开机程序

当打开电源,TH2281 会依内部 EPROM 和 RAM 的设定作自我测试,并且会将屏幕 上所有的显示信息打开近1 秒钟。如果检测出任何仪器故障,屏幕中央会显示出错 误的信息代码,并出现 ERR 的屏幕显示信息。

当仪器通过了自我测试,会显示仪器当前的版本代号。

2.4.3 高压线路测量的安全注意事项

为了安全上的考虑,当您需要在高压线路中测量电压时,请遵循以下注意事项: 在高压线路中测量时,请务必使用符合下列要求的导线及配件:

- 测试导线和配件必须完全的绝缘。
- 在自动测试时,必须使用能够与线路连接的导线,例如: 鳄鱼夹等导线。
- 不要使用会缩小电压空间的测试配件,因为那样会降低保护的功能,而造成极危险的状态。

按照下列的程序,在高压线路中进行测量:

- (1)使用标准的连断装置,如断路器或主开关等,来作为线路连接用。
- (2)使用符合安全规格范围内的测试导线和附件,来与线路相连接。
- (3)将TH2281设定在正确的测量量程。
- (4)使用(1)所叙述的开关来使线路通电后,再用 TH2281 测量。(此时,切 勿将测试导线从 TH2281 输入端拔出)。
- (5)使用(1)所叙述的开关线路断开电源。
- (6)将测试接头从高压线路的测试单元分离。
- 警告: 在 INPUT 和接地端间的最大共模电压为 500V 峰值。超过此范围时,可能会导致绝缘的崩溃而有电击的危险。

2.4.4 开机缺省状态

TH2281 开机后的设定状态为厂家默认的设定状态。用户可以通过菜单加载自己 所存储的仪器状态。关于仪器状态的加载请参照 4.5.3 恢复设置一节。

因为本手册中所叙述的基本测量程序都是假设仪器处于厂家设定的状态,所以 当您依本手册一步一步的学习测量程序时,请先重新设定至厂家所设定的状态。表 2-1 所示为厂家的默认设定状态。

参数	厂家默认设置
Function	ACV
Range	Auto Range
Rate	Medium
Remote/Local	Local
Trigger Mode	Immediate
Relative Mode	OFF
Compare Mode	OFF
Hi Limit	+1
Lo Limit	-1
Percent Mode	OFF
Reference	+1
Max/Min Mode	OFF
Reading Hold	OFF
Secondary Display Mode	ON
Cal Mode	OFF

2.4.5 预热时间

当 TH2281 完成开机程序后,即可操作使用。但是,为了测量上的精确度和稳定度,建议让 TH2281 有三十分钟的预热时间。预热后,如果要将 TH2281 移到温差 很大的另一场所进行测量时,最好再多等待一些时间,直到仪器内部的温度稳定之后再开始测量。

2.5 显示屏

TH2281 的显示屏幕会依循着测量项目和单位将读数显示出来。而位于显示屏幕 左、右、下三边的特殊符号,则可以指示各种不同的操作状态,关于具体的信息的 定义请参照 2.2.1 屏幕指示信息一节。

第三章 基本测量

3.1 开始

首先,你要做的就是让仪器的前面板作为一个向导。我们在第二章已经简述了 一些关于前面板的操作及开机前的准备。

前面板共有两排可供选择各种功能和操作的按键,大部分按键的上面有一用蓝 色字体标记的上档功能。如果要执行上档功能,首先按下_____按键(Shift标记将 会点亮),然后,再按下你所期望的功能键。例如:

如果按下____键,再次按下该键,Shift标记将关闭。

3.2 电压测量和功率测量

TH2281电压测量范围: 3.8 mV, 38mV, 380mV, 3.8V, 10V(实际38V物理量程); 最高分辨率是0.1µV(在3.8mV量程)。

功率测量范围: -47dBm~33dBm(0dBm=1mW, 50Ω负载)

连接方法

假如 TH2281 处于厂家设定的条件下,操作流程如下:

 将电压探头或同轴检波器航空插头推入交流毫伏/功率表航空插座上(探 头接地线应尽量短,测量电路板小电压时,探头需套上金属屏蔽套,防干 扰电压接入)。一般测量小电压(低于 10mV)需要先无信号调零,断开同

轴检波器信号连接或将探头插入同轴三通,按下____+ _ ●, 副显显示

"NULL",即开始调零,保持输入端无信号状态,观察主显读数,接近零 点即调零成功,如有必要可重复调零。

- 按 → 键锁定自动量程功能。当您启动此功能后,请注意 AUTO 标记被点亮。如果你想手动量程,使用量程 ▲ 和 ▼ 键去选择与期望电压一致测量范围。
- 3. 读取显示屏上的读数。

3.3 选择第二显示

默认状态下副显通过按◀◀或▶️键可以滚动显示出除当前主显外所有功能。

副参数的组合显示,各种组合如 3-1 表

3.3.1 操作使用

- 1. 按^(Shift) + (Rate)键来开启第二显示功能。
- 按
 3. 按
 ✓
 ✓
 ✓
- 3. 再次按^(Shift) + (Rate)键关闭关闭第二显示功能,主显不受影响。

十日	第二显示 (副显)							
土业								
V	dBm	dB	W	dBV	Vp-p	dBmV	dBµV	
dBm	dB	W	dBV	Vp-p	dBmV	dBµV	V	
W	dBV	Vp-p	dBmV	dBµV	V	dBm	dB	
dB	W	dBV	Vp-p	dBmV	dBµV	V	dBm	
dBV	Vp-p	dBmV	dBµV	V	dBm	Vp-p	W	
dBmV	dBµV	V	dBm	Vp-p	W	dBV	Vp-p	
Vp-p	dBmV	dBµV	V	dBm	dB	W	dBV	
dBµV	V	dBm	dB	W	dBV	Vp-p	dBmV	
Percentage (%)				0/	0/			
(测试值)	%							
Comp								
(测试值)	HI, IN, LO, PASS, FAIL							
Max/Min								
(测试值)	IVIAX			141111				

表 3-1 提供了主显功能下可能的副显功能的各种组合

3.4 数学运算功能

TH2281 的数学运算分为三类:

- 百分比
- dB 的计算
- dBm 的计算

选择和设置一数学功能的过程如下:

按下相应的数学功能键,打开该功能。

设置该数学功能的参数,并按 4 健确认。(如果再次按下此数学功能键将 取消该数学功能)

3.4.1 Percent

Percent 计算是根据你设定的参考值将作如下的运算:

rercent =
$$\frac{1000}{1000}$$
 Reference \times

其中: Input 是显示屏幕上的一般的显示读数 Reference 是用户输入的参数 Percent 是显示的计算结果

应用方法:

应用 Percent 数学功能,请按如下方法操作:

按 (Shift) + (Rel) 键选择 Percent 数学功能, 仪器副显显示当前的 Percent 数值。

如果在打开了 Percent 数学功能之后,还想改变参数的数值,除了上述介绍的参数数值设定还可以进行如下操作:

- 1. 再按^(Shift) + (Esc) 调出 A:MATH MEU 下的 3:PERC REF 命令, 按(▼)键进 入参数设定: +1.0000∧。
- 2. 使用 ▲ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值及单位。
- 3. 按**Auto**键确认参考数值。

切换到正常的测量功能后,TH2281即会显示出计算后的测量结果。如果 "Input"大于"Reference",显示出来的结果将为正,相反,如果"Input"小于 "Reference",显示结果将为负。

3.4.2 dB 计算

使用 dB 来表示 AC 电压的好处是,可以将一个大的测量范围压缩到一个较小范围的坐标轴内。dB 和电压的关系式如下所示:

- $d\mathbf{B} = \Delta \log \overline{\mathbf{W}}$
- 其中: V_{IN} 是输入的电压信号。 V_{REF} 是用户设定的参考电压值。

当输入的信号与设定的参考电压值相同时,仪器的读数将显示 0dB。

如果相对运算(REL)功能作用于 dB 数学功能之前,那么这个值(REL 值)被转换成 dB 值,然后在应用到 dB 数学功能;如果相对运算(REL)功能作用于 dB 数学功能之后,dB 数学功能直接应用于相对运算(REL)值。

应用方法:

按照如下步骤设定参考电压:

按 dB 键选择 dB 数学功能, 仪器副显显示当前的 dB 数值。

如果在打开了 dB 数学功能之后,还想改变参数的数值,还可以进行如下操作:

- 1. 再按 + Esc 调出 A:MATH MENU 下的 4:dB REF 命令,按 ♥ 键进入 参数设定: REF: +0.00000。
- 2. 使用 ◀ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值。
- 3. 按____键确认设定的参考电压值。
- **说明:** 1. 计算 dB 时,取 V_{IN}/V_{REF} 的绝对值。
 - 2. 最大的负 dB 值是 -60dB。此时, V_{IN} = 1mV, V_{REF} = 1000mV。

3.4.3 dBm 计算

dBm 是以 1mW 为参考值所定义的分贝值。用户可以自行设定参考阻抗,当 TH2281 的所测电压值通过此参考阻抗所消耗的功率为 1mW 时,此时,仪器会显示 0dBm。dBm 与参考阻抗和电压之间的关系式如下:

$$10111 - 10108 (Vin Zref) - 10108 (Vin Zref)$$

其中: V_{IN} 是交流电压输入信号 Z_{RF} 是用户设定的参考阻抗

如果相对运算(REL)功能作用于 dBm 数学功能之前,那么这个值(REL 值)被转 换成 dBm 值,然后在应用到 dBm 数学功能;如果相对运算(REL)功能作用于 dBm 数学功能之后,dBm 数学功能直接应用于相对运算(REL)值。

应用方法:

按 [dBm] 键选择 dBm 数学功能,仪器副显显示当前的 dBm 数值。

如果在打开了 dBm 数学功能之后,想改变参数的数值,还可以进行如下操作:

- 1. 再按 + (Esc)调出 A:MATH MENU 下的 5:dBm REF 命令, 按 ♥ 键进入 参数设定: REF: 0000。
- 2. 使用 ◀ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值(10~9999Ω)。
- 3. 按 ____ 键确认设定的参考阻抗值。

说明:

- 本节所提到的参考阻抗与输入阻抗是两个不同的概念, 仪器的输入阻抗是 仪器本身固有的, 无法由前述方法改变。
- 仪器默认 mX+b 和百分比数学计算是在 dBm 或 dB 计算之后。例如:对于一 个 1V 的交流电压信号,如果 mX+b (m = 10, b = 0)数学功能被应用,则 显示读数为 10.000MXB;如果 dBm (Z_{REF} = 50 Ω)功能再被应用,则显示读 数为 130MXB。

第四章 测量选项

本章将帮助你更加深入的了解 TH2281 的特性。无论你是通过前面板或是远程 接口操作仪器,本章都是非常有帮助的;因为某些测量选项只能通过远程接口才能 访问。该章共分为以下几部分:

- 测量配置一讲述了量程,相对读数,分辨率位数和测量速度。
- 触发操作一叙述了触发源。
- 最大最小值一描述测试过程中的最大最小值。
- 极限比较操作—讲述了如何设定比较读数极限。
- 系统操作一详细的描述了仪器设置的保存和恢复,仪器的自检和校准。

4.1 测量配置

以下将讨论有关 TH2281 在测量时所能设定的各种设置。

4.1.1 量程

通过前面板设置或远程接口,可以使数字毫伏/功率表选择自动量程或手动量 程。自动量程可以使毫伏/功率表自动的为测量选择最合适的量程;但是,为了得 到更快的测量速度,你也可以使用手动量程,因为毫伏/功率表在每次测量前不必 再去决定使用哪一个量程。当关闭电源或一个远程复位命令后,仪器又会回到自动 量程。

(1). 最大读数

能显示的最大读数将会超过所设定量程的 5%。

(2). 手动量程

要想使用手动量程时,只需要按▲ 或 ▼ 即可,每按一次,即可改变一次量程,屏幕会提示所设定的量程范围,时间大约一秒钟。

如果在你设定某个量程之后,屏幕提示"OVL.D"的信号,请继续选择一个更高的量程,直到屏幕显示出正常的读数为止。尽可能将能够正常测量的量程设定到 最低,以确保测量的最佳精确度和分辨力。 (3). 自动量程

要想使用自动量程时,只要按 健即可。当自动量程被选择后,屏幕上AUTO 信号标记会被点亮,仪器会根据输入的信号自动的选择最好的量程;但是,当你需要用快速测量时,最好不要使用自动量程。

说明:量程的上下限为该量程的±5%。

如要想取消自动量程,再按一次[▲]型 、▲ 或 ▼ 键即可,按[▲]型 取消 自动量程后,仪器将自动设定在当前量程。

4.1.2 相对运算(Relative)

相对运算功能可用来将偏置归零,或是由现有或以后的测量值中扣除一个基准 值。当使用 REL 功能时,TH2281 会将当前的读数设定为一个参考值,接下来的读数 都会在实际输入值的基础上减掉该参考值。

针对各种不同的测量功能,你都可以自行设定一个参考值。但是,该参考值一 经设定之后,无论在哪个设定量程下,该参考值皆相同。例如:在10V量程时,参 考值设定为2V,此后,不管量程在10V、3V、300mV或是30mV,其参考值都是2V。 另外,当你利用 REL功能,此时的偏置值即为参考值,屏幕上显示的读数如下:

显示读数 = 实际输入 - 参考值

说明:对某个量程来说,使用 REL 功能不会增加该量程的最大允许的输入信号例如:在 3.8V 量程,对于大于 3.9V 的输入信号,TH2281 仍会显示 "OVL.D"。

去设置 REL 值,当仪器显示了你期望的 REL 值时,你通过使用 (Rel) 键来设定 REL 的参考值, REL 标记就被点亮,当再次按下 Rel)键取消 REL。

4.1.3 速度(Rate)

Rate的选取即是用于设定A/D转换器的积分时间,亦即对输入信号测量的时间。 积分时间的长短会影响有效的显示位数、读数噪声以及仪器最终的读数速率。

通常,最快的测试速度(Fast 可以通过前面板或远程接口设置)会增加读数噪 声和降低有效位数,相反,最慢的测试速度 Slow 可以获得最佳的串共模抑制能力。 至于设定在中间的范围,则可以在测量速度和噪声间取得一平衡点。

关于 Rate 可供设定的参数, 解释如下:

20

- Fast 设定测试速度 25 次/秒。当测量速度为最主要的需求时,可使用此设定,但是相对的会造成有效位数的降低和噪声的增加。
- Medium 设定测试速度 10 次/秒。当想在噪声和速度间取得一平衡时,可使 用此设定。
- Slow 设定测试速度 5 次/秒。Slow 在损失速度的前提下,提供了最好的噪声性能。

4.2 触发操作

TH2281 的触发操作设置允许用户设定仪器自动触发测量、手动触发测量或外部 触发测量,每次触发后得到测量结果。下面将要讨论前面板触发和读数保持功能。

4.2.1 触发流程

(1). 等待触发

触发源能够阻止仪器的操作,直到可编程的事件发生并被检测到。关于触发源 叙述如下:

- 立即触发 对于这个触发源,触发检测能立即检测到事件的触发并继续 执行。
- 外部触发包括如下两种触发:
 - 收到总线触发(*TRG)命令。
 - 前面板 Trig 键被按下 (注意: 要使 TH2281 响应 Trig 键, TH2281 不 能处于远程控制模式下)。

对触发设置步骤如下:

1. 按^{shift} + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到

B:TRIG MEU 然后按 ▼ 键进入"命令选项",使用 ◀ 或 ▶ 键找

到 1:TRIG MODE 命令, 按**下**键进入参数(IMM、MAN 或 BUS)设定。

- 2. 使用 ◀ 或 ▶ 选择 IMM、MAN 或 BUS, 然后按 색 键确认。
- (2). 测量采样

仪器最主要的工作就是测量。同时,测量可能又包括下面这额外的工作:

- Hold 如果 Hold 功能已开启,第一个被处理的读数称为"Seed"读数,接着仪器操作就在"测量采样"块内循环。得到第二个被处理的读数后,仪器 会 检 查 第 二 个 读 数 是 否 在 "Seed" 读 数 的 有 效 范 围 (0.01%,0.1%,1%,10%)之内;如果这个读数在所选择的范围之内,仪器操作再次在"测量采样"块内循环。这个循环继续,直至得到在有效范围内连续指定数量(2~100)的读数。如果某一个读数不在此范围之内,仪器把这个读数作为一个新的"Seed"读数,Hold 处理继续循环。
- (3). 读数保持(Reading hold)

当像前面"测量采样"中描述的那样得到一个 Hold 读数后,蜂鸣器(如果已打开)就会发出声响,这个读数("Seed"读数)就被认为是一个"真实的测量"结果。读数结果("Seed"读数)会显示在显示屏上直至得到一个"超出范围"的读数,重新开始 Hold 处理过程。读数保持特性允许你去捕捉并且在显示屏上保持一个稳定的读数。

可以按照下面的步骤来打开并设置读数保持功能

- 1. 按 Shift + Trig 开启仪器的读数保持功能。
- 按 Shift + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到
 B:TRIG MEU 然后按 ▼ 键进入"命令选项",使用 ◀ 或 ▶ 键找到
 2:HOLD WIN 命令,按 ▼ 键进入参数选择。
- 4. 使用 ▶ 选择 3:HOLD CNT, 按 确认键进入参数设定(默认为 5): RDGS: 005
- 5. 使用 ▲ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值。
- 6. 按**Auto** 键确认设定的个数(2~100)。

4.3 最大最小值(MAX/MIN)

用来指示测试过程中出现的最大最小值。开启该功能后,仪器开始记录测试过 程中的最大和最小值,并保持更新。可用于检测一段时间内测试数据的波动范围。 可以按照下面的步骤来打开和读取 Max 和 Min 值

- 1. 按^{Max/Min}开启 Max/Min 功能。
- 2. 按▲或▶查看循环查看 Max 和 Min 值。
- 3. 再按^{Max/Min}关闭 Max/Min 功能。

4.4 极限比较测量(Compare Operations)

极限比较测量功能的设定和控制决定测量值是在 HI、IN 或 LO 状态的读数。除导通测量以外,极限测量能够适用在所有的测量功能。极限测量功能应用在百分比数学运算之后,测量值的单位已在应用此功能之前设定。例如:

低限(Low limit) = -1.0; 高限(high limit) = 1.0。
 一个150mV的读数即0.15V (IN)。

当测量读数不在范围内(HI或L0)时,TH2281会发出报警声音(如果Beep打开)。

4.4.1 打开极限比较测量(Enabling compare)

按照下列程序来打开极限比较测量功能: 按(Shift) + (Max/Win) 键开启和关闭极限比较测量功能。

4.4.2 设置极限比较范围(Setting Compare Limit Values)

依照下列步骤去设定高或低限的范围:

- 按 Shift + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到
 A:MATH MEU 然后按 ♥ 键进入"命令选项",使用 ◀ 或 ▶ 键找到
 1:HIGH LIMIT 命令,按 ♥ 键进入参数设定:
 HI: +1.0000∧
- 2. 使用 ◀ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值,按 ▲ ④ 确认键设定高限值。
- 3. 使用 ▶ 选择 2:LOW LIMIT, 按 ▼ 键进入低限参数设定: L0: -1.0000∧
- 4. 使用 ◀ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的数值,按 ▲ ④ 确认键设定低限值。
- 5. 使用功能按键或(Shift) + Esc)返回到正常读数显示状态。

当仪器返回到正常的测量状态后,状态信息 HI/IN/L0, PASS/FAIL 会随着读

数同时显示。

4.5 系统应用(System Operations)

TH2281 还有其他一些菜单的操作:系统 Beep 的开/关状态;保存和恢复系统设置信息,显示状态的控制,按键声音的开关,仪器的自我检测以及仪器校准。下面将就这些设置进行简单的介绍。

4.5.1 蜂鸣器控制(Beep)

在一定的条件下, 仪器将会发出一报警声音, 例如: 打开读数保持(Hold)功能后, 当仪器捕捉到一个稳定的读数时, 就会发出 Beep 声。当然, 在某种情况下, 你可能想去关闭 Beep。

当 Beep 处于关闭状态下, 仪器在下列几种情况下将不会发出声响:

1. 在极限测量时,读数超出极限。

2. 打开读数保持功能后,捕捉到一个稳定的读数时。

在 Beep 处于关闭状态下, 仪器在下列几种情况下将不受影响:

- 1. 仪器内部有错误发生。
- 2. 对仪器的导通测量功能。
- 3. 对按键的声音

仪器 Beep 的开关状态保存在非易失存贮器中,当关闭电源或仪器复位后,Beep 的状态将不会改变。厂家的默认状态为打开。

对蜂鸣器的状态改变可以进行如下操作:

- 按 Shift + Esc 键调出"菜单选项",然后使用 或 ▶ 键找到C:SYS MEU 然后按 键进入"命令选项",使用 或 ▶ 键找到1: BEEP STA 命令,按 键进入参数设定。
- 2. 使用 **▲** 或 **▶** 选择 **ON** 或 **OFF**, 然后按 **▲** 键确认。

4.5.2 按键音(Key Sound)

有时为了防止误操作,TH2281 具有按键音功能,你可以打开或关闭按键音。仪器的厂家默认状态是打开。仪器的按键音的设置存储在非易失存储器中,在关闭电源或远程仪器复位后,按键音的状态不会改变。

对于按键音的状态设置可以按如下步骤来进行操作:

- 按^(Shift) + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到C:SYS MENU 然后按 ▼ 键进入"命令选项",使用 ◀ 或 ▶ 键找到 2:KEY SONG 命令,按 ▼ 键进入按键音设置选项。
- 2. 使用 ◀ 或 ▶ 选择 0N 或 0FF, 然后按 색型 键确认。

4.5.3 自检(Self-test)

系统的自检操作是仪器自身的一种诊断工具,它可以帮助维修人员快速的发现 仪器的问题所在。

TH2281 具有开机自检功能,可以通过开机自检,说明仪器是可操作的。开机自 检只是自检操作中的一部分,它不包括仪器的模拟电路部分的自检。关于自检程序 的使用以及仪器所给出的信息请参阅 TH2281 维修手册。

4.5.4 校准(Calibration)

为了确保仪器能够达到设计的性能技术指标,要求至少一年重新校准和校验一次这个仪表。 仪器的校准 RS-232 接口软件。

注意:为了避免破坏储存在非易失性存储器中的校 准数据,对仪器的校准只能由授权的服务中心或有资格 的个人使用满足要求的设备去进行校准。

关于详细的校准程序信息,请联系厂家或经授权的代 理商。

第五章 远程操作

本仪器除前面板可以控制仪器之外,还可以使用 RS-232 串行接口或 GPIB 并行 接口进行远程控制,但这两种接口不可同时使用;它们具有相同的程控命令(SCPI: Standard Commands for Programmable Instruments),但使用不同的硬件配置和 通讯协议。

本章将就下面这些内容加以说明:

- 选择一种接口
- RS-232 接口说明及操作
- GPIB 总线说明及操作

5.1 选择一种接口

TH2281 超高频毫伏/功率表可以支持两种接口:

- RS-232/ USB_DEV 接口*
- GPIB 总线接口(选件)

在同一时间你只能使用一种接口。厂家默认的接口选项是 USB 接口。你可以通 过前面板来选择使用哪种接口;接口选择后被存储在非易失性存储器中,当关闭电 源或远程复位后不会改变。

*注: 此仪器的 USB 接口与 RS232C 接口功能相同,都是执行 RS232C 通讯之用。

5.1.1 RS-232

你可以连接计算机到 TH2281 的 USB/RS-232 接口,但是有一些因素需要注意:

- 必须选择一种波特率
- 必须使用 SCPI 程序语言

依照下列步骤选择 RS-232 作为远程接口:

- 按 + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到
 C:SYS MENU 然后按 ♥ 键进入"命令选项",使用 ◀ 或 ▶ 键找到
 5:INTERFACE 命令,按 ♥ 键进入参数(USB 或 GPIB)设定。
- 2. 使用 ◀ 或 ▶ 键选择 USB, 然后按 🛄 键确认选择 USB 接口。
- 3. 使用功能按键或_____+ Esc 返回到正常读数显示状态。

关于 RS-232 接口更多的信息,请看 RS-232 接口说明及操作。

5.1.2 GPIB

GPIB 总线即是 IEEE-488 接口。用户必须为 TH2281 选择一个唯一的地址, 厂家默认 的地址是 8。

依照下列步骤选择 GPIB 作为远程接口:

- 按 + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到
 C:SYS MENU 然后按 ♥ 键进入"命令选项",使用 ◀ 或 ▶ 键找到
 2:INTERFACE 命令,按 ♥ 键进入参数(USB 或 GPIB)设定。
- 2. 使用 ◀ 或 ▶ 键选择 GPIB, 然后按 键确认选择 GPIB 接口。
- 3. 使用功能按键或_____+ Esc 返回到正常读数显示状态。

关于 GPIB 接口更多的信息,请看 GPIB 接口说明及操作。

5.2 RS-232 接口说明及操作

仪器提供丰富的程控命令,通过 RS-232 接口,计算机可以实现仪器面板上几 乎所有的控制操作。

5.2.1 RS-232 接口简介

目前广泛采用的串行通讯标准是 RS-232 标准,也可以叫作异步串行通讯标准,用于实现计算机和计算机之间、计算机与外设之间的数据通讯。RS 为"Recommended Standard"(推荐标准)的英文缩写,232 是标准号,该标准是美国电子工业协会(EIA) 1969 年正式公布的标准,它规定每次一位数据经一条数据线传输。

大多数串行口的配置通常不是严格基于 RS-232 标准;在每个端口使用 25 芯连接器 (IMB AT 使用 9 芯连接器)的。最常用的 RS-232 信号如表所示:

信号	符号	25 芯连接器引脚号	9 芯连接器引脚号
请求发送	RTS	4	7
清除发送	CTS	5	8
数据设置准备	DSR	6	6
数据载波探测	DCD	8	1
数据终端准备	DTR	20	4
发送数据	TXD	2	3

TH2281 用户手册

接收数据	RXD	3	2
接地	GND	7	5

同世界上大多数串行口一样,本仪器的串行接口不是严格基于 RS-232 标准的, 而是只提供一个最小的子集。如下表:

信号	符号	连接器引脚号
发送数据	TXD	3
接收数据	RXD	2
接地	GND	5

这是使用串行口通讯最简单而又便宜的方法。

注意:本仪器的串行口引脚定义与标准9芯 RS232C 的连接器的引脚定义相同。

本仪器的 RS-232 连接器使用 9 芯针式 DB 型插座,引脚顺序如下图所示:

后面板连接器

使用标准的 DB 型 9 芯孔式插头可以与之直接连接。

警告:为避免电气冲击,插拔连接器时,应先关掉电源;请勿随意短接输出端 子,或与机壳短接,以免损坏器件。

5.2.2 RS-232 操作

(1). RS232 与计算机连接如图 5-1 所示:

图 5-1 RS-232 连接示意图

由上图可以看到,本仪器的引脚定义与 IMB AT 兼容机使用的 9 芯连接器串行 接口引脚定义相同。用户可使用双芯屏蔽线按图示自行制作三线连接电缆(长度应 小于 1.5m)或从我公司购买计算机与仪器间的串行接口电缆线。

自制连接电缆时,注意应在计算机连接器上将4、6脚短接,7、8脚短接。

(2). 发送和接收的数据格式

TH2281 使用含有起始位和停止位的全双工异步通讯传输方式, RS-232 的数据 传输格式为: 8 位(bit)数据位, 1 位(bit)停止位,没有校验位(bit),结束 符为<LF>(换行符, ASCII代码为 10)。

(3). 选择波特率 (Baud rate)

波特率是 TH2281 和计算机通讯的速率;选择一种合适的波特率:

- 38.4k
- 19.2k
- 9600
- 4800
- 2400
- 1200
- 600

说明: 厂家默认的波特率是 9600。

当用户选择波特率时,首先确认你连接到 TH2281 上的可编程控制者(一般指 计算机)能够支持你所选择的波特率。 依照下列步骤去设定仪器的波特率:

- 按 + Esc 键调出"菜单选项",然后使用 ◀ 或 ▶ 键找到
 C:SYS MENU 然后按 ♥ 键进入"命令选项",使用 ◀ 或 ▶ 键找
 到 3:BAUD RATE 命令,按 ♥ 键进入波特率参数的选项; 你将看到:
 BAUD: <rate>。
- 2. 使用 ↓ 或 ▶ 键选择将要设定的波特率,然后按 健确认你的选择。
- 3. 使用功能按键或_____+ Esc 返回到正常读数显示状态。

(4). 软件协议

由于在 RS-232 接口上不使用硬件通讯联络,为减小通讯中可能的数据丢失或 数据错误的现象,本仪器采用字符回送的方式进行软件联络。编制计算机通讯软件 时请参考下述内容:

- 命令串语法及格式在第六章"命令参考"中叙述。
- 主机发送的命令以ASCII代码传送,以<LF>(即换行符,ASCII代码10)为 结束符,仪器在收到结束符后开始执行命令串。
- 仪器每接收到一个字符后,立即将该字符回送给主机,主机应在接收到这个回送字符后再继续发下一个字符。如接收不到回送字符,可能因素有:
 - 1. 串行口连接故障
 - 2. 检查仪器是否已打开 RS232 接口功能, 波特率的选择是否正确
 - 仪器正在执行总线命令,暂时不能响应串行接收。此时,上一发送字符 被仪器忽略,如果要保证命令串的完整,主机应该重发未回送的字符。
- 本仪器仅在下面两种情况下向主机发送信息:
 - 1. 正常接收到主机的命令字符,以该字符回送
 - 2. 执行查询命令,向主机发送查询结果
- 仪器一旦执行到查询命令,将立即发送查询结果,而不管当前命令串是否 已全部执行完毕。因此,一个命令串中可以有多次查询,但主机要有相应 次数的读结果操作。本协议推荐一个命令串中仅包含一次查询。
- 查询结果以 ASC II 码字符串送出,以<LF>(即换行符,ASC II 代码 10)为结 束符。
- 仪器发送查询结果时,是连续发送的(间隔约1ms),主机应处于接收数据 状态,否则可能造成数据的丢失。
- 主机产生查询后,要保证读空查询结果(接收到<LF>表示结束),以避免查询与回送间的冲突; 同样主机在读取查询结果前,也应读空回送字符。
- 对于一些需长时间才能完成的总线命令,如复位等,主机应主动等待,或 以响应用户键盘输入确认的方式来同步上一命令的执行,以避免在命令执 行过程中下一个命令被忽略或出错。
- 以 DOS 应用软件编制的通讯软件,则应在支持串行口的纯 DOS 环境下运行, 若在 WINDOWS 下运行,则可能会因对串行口的管理方式不一样而产生错误。

(5) 串行接口程序举例

关于串行接口程序的示例,请参照附录 B.

5.3 GPIB 接口说明及操作

这一部分将介绍 GPIB 总线标准、连接方法和仪器的一些设定。

5.3.1 GPIB 总线

GPIB(IEEE-488)通用并行总线接口是国际通用的智能仪器总线接口标准。IEEE 为电 气与电子工程师学会的英文缩写,488 为标准号。通过该接口可以与计算机或其它 智能化设备连接通讯,可以方便地与其他测试仪器一起组成自动测试系统。在同一 总线上可以同时连接多台测试仪器。在本仪器中,仪器采用 IEEE488.2 标准,GPIB 接口由用户选购。控制指令系统是开放的,用户可以使用产品提供的计算机操作界 面,也可以自己根据该控制指令系统编程以达到目的。控制指令系统支持仪器绝大 多数功能,也就是说,在控制计算机上可以达到仪器几乎所有功能的操作,以实现 仪器的远程控制。

使用本仪器 GPIB 系统时,应注意以下几点:

- 一个总线系统中,每次连接测试仪器的电缆长度不应超过2米,所有连接 的测试仪器的电缆总长度不应超过20米。
- 2. 同一总线上最多可同时连接 15 台测试仪器。
- 电缆如何连接在一起并无限制,但推荐在任一测试仪器上仅叠加4个背式 接插件。

图 5-2 后面板 GPIB 接口

(1). GPIB 电缆连接法一:

图 5-3 双背式接插件叠加

(2). GPIB 电缆连接法二:

图 5-4 三背式接插件叠加

5.3.2 GPIB 接口功能

本仪器提供了除控者以外的绝大多数 GPIB 通用功能,参见下表:

代号	功能
SH1	支持全部数据源联络功能
AH1	支持全部受信器联络功能
Τ5	基本讲功能,只讲功能, MLA 时讲取消,不支持串行点名
L4	基本听功能, MTA 时听取消, 无只听功能
RL1	远控/本地功能
DC1	设备清除功能
DT1	设备触发功能
CO	无控者功能
E1	开集电极驱动

5.3.3 设置 GPIB 地址

本仪器的 GPIB 以单地址方式寻址,没有副地址;TH2281 出厂时的默认 GPIB 地址是 8。用户可以自行设置 GPIB 地址(0~30),(须先行选择接口为 GPIB,否则系 统菜单不会出现设置地址选项)地址值可自动被保存在非易失性存储器中。在一个 GPIB 总线系统中,不允许分配和其他设备或控制者(计算机)相同的地址。

依照下列步骤设定 TH2281 的 GPIB 地址

- 按 + Esc 键调出 "菜单选项",然后使用 ◀ 或 ▶ 键找到
 C:SYS MENU 然后按 ▼ 键进入 "命令选项",使用 ◀ 或 ▶ 键找
 到 6:GPIB ADD 命令,按 ▼ 键进入 GPIB 地址参数的选项;你将看到: ADDES: 08。
- 2. 使用 ▲ 和 ▶ 键选择欲改变的位数,然后用 ▲ 和 ▼ 来增减数 值,键入一个希望的 GPIB 地址,然后按 ₩ 键确认你的设置。
- 3. 使用功能按键或_____+ Esc 返回到正常读数显示状态。

5.3.4 通用总线命令

通用总线命令(像 DCL)是不论何种机器都具有相同的含义。 通用命令和辅助说明:

命令	命令说明	对 TH2281 毫伏/功率表的控制说明
REM	REMOTE 8	使仪器进入远程控制方式
IFC	ABORT 8	使仪器接口复位到空闲状态
LLO	LOCAL LOCKOUT	封锁本地消息, 使面板上所有键均不可操作
GTL	LOCAL 8	仪器返回本地控制,面板上按键处于有效状态
DCL	CLEAR	清除所有仪器的输入输出缓冲器
SDC	CLEAR 8	清除 TH2281 的输入输出缓冲器
GET	TRIGGER 8	触发一次仪器,仪器测量后将测量结果送入输出 缓冲器
SPE, SPD	SPOLL 8	串行点名命令

通用总线命令(SCPI)的详细说明请参见第六章: SCPI 命令参考。

5.4 数据格式

仪器从接口总线输出测量结果时,以ASCII字符串的格式传送。 数据格式如下:

SD.DDDDDDDESDDD<NL> S: +/-D: 数字 0~9 E: 指数符号(尾数的"+"号省略) <NL>: 换行符,其ASCII为10

第六章 SCPI 命令参考

6.1 命令结构

TH2281 命令分为两种类型: GPIB 公用命令和 SCPI (可编程仪器命令标准) 命令。 GPIB 公用命令由 IEEE488.2-1987 标准定义,这些命令适用于所有仪器装置,但本 仪器并不支持全部公用命令。SCPI 命令是树状结构的,最多可以有三层,在这里最 高层称为子系统命令。只有选择了子系统命令,该子系统命令下的层才能有效,使 用冒号(:)来分隔高层命令和低层命令。例图 1-1。

6.2 命令语法

下面对公共命令和 SCPI 命令的语法作简要介绍。

6.2.1 命令关键字和参数:

公共命令和 SCPI 命令分为两种:带参数与不带参数的命令。下面是一些例子: *RST 没有参数 :FORMat <name> 带参数(name) :IMMediate 没有参数

在命令关键字和参数之间应该至少有一个空格。

•[]:有些命令字被放在方括号中,意味着这些命令字是可选,在编写程序时, 可以不写这些信息。例如:

:RANGe[:UPPer] <n>

这个方括号表示:UPPer 是可选择的,可以不必使用。这样上面的命令可以用下面这两种方式发送:

:RANGe <n> 或者 :RANGe:UPPer <n>

注意: 使用可选命令时,不要使用方括号([]).

- < >: 使用尖括号表示一个参数类型。在编写程序时不包括尖括号(<>)。例如: :HOLD:STATe 参数表示此处是一个布尔类型的参数。因此,如果打开 HOLD 功能,你 必须发送带有 ON 或1 的参数命令,如下: :HOLD:STATe ON 或者 :HOLD:STATe 1
- •参数类型:下面是一些公用的参数类型:

 $\langle b \rangle$ Boolean:用该参数来打开或关闭仪器的某项操作功能。0(OFF) 关闭该操作:1(0N)打开该操作。例如: :CURRent:AC:RANGe:AUTO ON 打开 AUTO 量程 <name> Name parameter:从所列出的参数名种选择一个参数。例如: $\langle name \rangle = MOVing$ REPeat :RESistance:AVERage:TCONtrol MOVing Numeric Representation format:这个参数代表一个整数(6), <NRf> 实数(25.3)或者是浮点数(5.6E2)的数字。例如: :MMFactor 5 $\langle n \rangle$ Numeric value:这个参数值代表 NRf 数字或如下这些参数名: DEFault, MINimum, MAXimum. 例如: :CURRent[:DC]:NPLCycles 1 :CURRent[:DC]:NPLCvcles DEFault :CURRent[:DC]:NPLCvcles MINimum

:CURRent[:DC]:NPLCycles MAXimum

6.2.2 命令关键字缩写规则

使用如下这些规则去决定任何 SCPI 命令的缩写形式。

- 如果命令关键字的长度小于或等于四个字符,则没有缩写形式。例如: :AUT0 = :AUT0
- 这些规则适用于除四个字符以外的命令关键字。
- 如果命令关键字的第四个字符是 v, o, w, e, 1 其中之一,则去掉它和它后面的 所有字符。例如:

:immediate = :imm

• 特殊规则---下面这个命令的缩写形式仅使用关键字的前两个字符:

:TCouple = :tc

• 如果命令关键字的第四个字符是一个辅音字母,则保留它并去掉后面的所有 字符。例如:

:format = :form

如果这个命令包含查询标记(?)或者一个不可选择的数字在命令关键字中,则在缩写形式中必须包含它。例如:

:delay? = :del?

包含在方括号([])中的命令关键字或字符都是可选择的,在程序代码中可以不包含他们。

6.2.3 命令结构基本规则:

- 忽略大小写。
 例: FUNC:VOLT:DC = func:volt:dc = Func:Volt:Dc
- 空格(_表示空格)不能放在冒号的前后。
 例: 図 FUNC_:_ VOLT:DC → ☑ FUNC: VOLT:DC
- 命令可以缩写,也可以全部拼写(在以后的命令叙述中,缩写以大写字母给出)。

例: FUNCTION: VOLTAGE: DC = FUNC: VOLT: DC

• 命令后紧跟一个问号(?)执行一次对应于该命令的查询。 例: FUNC?

6.2.4 多重命令规则

用分号(;)来分隔同一命令行上的多重名令,下面是多重名令规则:

- 在一个多重命令行上,使用分号(;)来分隔同一子系统命令下的同层命令。
 例::RESistance:NPLCycles <n>;NPLCycles ?
- 分号(;)作为分隔符,后面紧跟一个冒号(:),表示从命令树的最高层重新 开始命令。

例: :RESistance:NPLCycles <n>;:RESistance:NPLCycles ?

- 公共命令和 SCPI 命令只要它们用分号(;)分开就可以在同一命令信息中 使用。
 - 例: :RESistance:NPLCycles <n>;*IDN?

6.2.5 命令路径规则

- 每一个新的程序消息必须从根命令开始,除非根命令是可选的(例 如:FUNCtion)。如果根命令是可选的,可以把下一级的命令字作为根命令。
- 在程序开始处的冒号(:)是可选的,可以不必使用。例如:
 :DISPlay:ENABle = DISPlay:ENABle
- 当仪器检测到一个冒号(:)程序指针会移动到下一个命令级。
- 当仪器的程序指针检测到冒号(:)后面紧跟着一个分号(;)时,它会返回到 根命令级。
- 仪器的程序指针只能向下一级移动,不能向上一级移动;所以当执行一个 高一级的命令时,需要从根命令重新开始。

6.3 命令参考

TH2281 共有如下子系统命令:

●DISPlay ●FUNCtion ●VOLTage ●dBm ●Vpp ●PERiod ●HOLD ●TRIGer ●FETCh TH2281 共有如下公共命令:

 \bigstar *RST \bigstar *TRG \bigstar *IDN

6.3.1 DISPlay 子系统命令

DISPlay 子系统命令主要用于设定仪器的显示页面。表 6-1 是 DISPlay 子系统 命令的命令树结构。

命令	功能简述
:DISPlay	仪器的显示控制命令
:ENABle 	使能或取消前面板显示
:ENABle?	查询显示状态

表 6-1 DISPlay 子系统命令树

:DISPlay

:ENABle

命令语法:	:DISPlay:ENABle 	
参数	 = 0 或 0FF	取消前面板显示
	1 或 ON	使能前面板显示
查询	:ENABle?	查询显示状态
功能	该命令用于使能或取消前面	板显示。当取消后, 仪器处于高速操
	作状态,显示被固定,所有	的前面板操作被取消(除了 LOCAL)。
	通过使用:ENABle 命令或按	LOCAL 键回复通常的显示。

6.3.2 FUNCtion 子系统命令

FUNCtion 子系统命令主要用于设定仪器的测量功能。表 6-2 是 FUNCtion 子系 统命令的命令树结构。

命令	功能简述	
:FUNCtion <name></name>	选择测量功能: VOLTage/rms,	
	Vpp/peak,Watt,dBm, dB, dBV, dBmV, dBuV	
:FUNCtion?	查询测量功能	

FUNCtion 命令

:FUNCtion name

命令语法:	:FUN	WCtion name	
参数	name =	VOLTage	选择电压有效值测量功能
		Vpp	选择电压峰值测量功能
		Watt	选择功率测量功能
		dBm	选择 dBm 测量功能
		dB	选择 dB 测量功能
		dBV	选择 dBV 测量功能
		dBmV	选择 dBmV 测量功能
		dBuV	选择 dBuV 测量功能
查询	:FUNCtion?)	查询当前的测量功能
功能	用这个命令去选择仪器的测量功能。		

6.3.3 VOLTage 子系统命令

这个 VOLTage 子系统命令用来设置和控制 TH2281 的电压测量功能。

命令	功能简述	默认参数
:VOLTage:RANGe <n></n>	设置测量量程范围	0.003
:AUTO 	使能或取消自动量程	1
:AUTO?	查询自动量程是否开启	
:VOLTage:Speed/rate <n></n>	设置测量速度	
:VOLTage:Speed/rate?	查询测量速度	

:VOLTage:REFerence <n></n>	设定参考值(0~12)	
:STATe 	使能或取消参考	1
:STATe?	查询参考状态	
:ACQuire	使用输入信号作为参考	
:VOLTage:REFerence ?	查询参考值	
:REFerence?	查询参考值	

:RANGe 命令

:RANGe <n></n>		
命令语法:	:VOLTage: RANGe <n></n>	设置测量量程范围
参数	<n> = 0.003, 0.03, 0.3, 3, 10</n>	测量量程范围

查询 : RANGe? 查询测量量程值

:Speed 命令

:Speed $\langle n \rangle$

命令语法:	:VOLTage:Speed/rate <n></n>	设置测量速度值
参数	$\langle n \rangle = 0, 1, 2$	速度的设定值
	MED	1
	FAST	0
	SLOW	2

 查询
 : Speed?
 查询速度设定值

 功能
 基本测量功能使用: speed 命令设定。

:REFerence 命令

:REFerence <n>

命令语法:	:VOLTage:	REFerence <n></n>	设置 ACV 的参考值

参数	< n > = 0 - 12	测试的参考值
	DEFault	0
	MINimum	指定功能的最小值
	MAXimum	指定功能的最大值
查询	:REFerence?	查询所对应功能的参考值

功能 此命令用来对已指定的功能设置一个参考值。如参考值使能 (:REFerence:STATe),读数与输入信号和参考值间有如下关系: 读数 = 输入信号 - 参考值 从前面板来看,参考值既是相对运算(REL). 命令:REFerence <n>与命令:ACQuire 是相结合的。当一个参考值 使用命令:REFerence <n>和命令:ACQuire 设置后,都可以 用:REFerence? 命令进行查询,得到参考值。

:STATe

- 命令语法: :VOLTage:REFerence:STATe 控制电压的参考值
 参数 = 1 或 0N
 使能参考
 0 或 0FF
 取消参考
 查询 :STATe?
 查询参考状态
 - 功能 此命令用来使能或取消已指定测量功能的参考值。

:ACQuire

- 命令语法: :VOLTage:REFerence:ACQuire 获得 ACV 的参考值
- 功能 当此命令被发送,仪器将把当前测量的输入信号作为参考值。这 个命令 一般用作零显示。例如:如果仪器正在显示一个 10μV 的 偏置,通过发送此命令设置参考值,从而达到零显示。此命令是 针对已经指定的测量功能而言的,当以任何其他功能的形式发送 此命令将导致错误产生。同时,如当前的读数溢出或者读数没有 被触发,发送此命令也会导致错误。

6.3.4 HOLD 子系统命令

命令	功能简述	默认参数
:HOLD	设置 HOLD 参数路径	
:WINDow <nrf></nrf>	设置 HOLD 范围(%); 0.01 到 10	1
:WINDow?	查询 HOLD 范围	
:COUNt <nrf></nrf>	设置 HOLD 计数; 2 到 100	5
:COUNt?	查询 HOLD 计数	
:STATe <nrf></nrf>	使能或取消 HOLD	OFF
:STATe?	查询 HOLD 状态	

:HOLD 命令

下面这些命令被用作配置和控制 HOLD 特性。

:WINDow <NRf>

命令语法:	:HOLD:WINDow <n< th=""><th>Rf></th></n<>	Rf>
参数	<nrf> = 0.01 到 10</nrf>	设置范围(percent)
查询	:WINDow?	查询 HOLD 范围
功能	该命令用来设定 HOLD	范围。用一个"种子"读数的百分比作为
	HOLD 处理的误差范围。	

:COUNt <NRf>

命令语法:	:HOLD:COUNt <	NRf>
参数	<nrf> = 2 到 100</nrf>	设置 HOLD 计数个数
查询	:COUNt?	查询 HOLD 计数个数
功能	该命令用来指定 HOLD)功能的计数个数。COUNt 是在 HOLD 处理过
	程中符合"种子"的	误差范围内的读数的个数。

:STATe

命令语法:	:HOLD:STATe 	
参数	 = 0 或 OFF	取消 HOLD
	1 或 ON	使能 HOLD
查询	:STATe?	查询 HOLD 状态
功能	该命令用作使能或取消 HOLD。	

6.3.5 TRIGger 子系统命令

命令	功能简述	默认参数
:TRIGger	用于设定仪器的触发模式	IMMediate
:SOURce <name></name>	查询当前的触发模式	
:SOURce?	用于设定仪器触发后的延时时间	0

:TRIGger

TRIGger 子系统命令用于设定仪器的触发模式,触发后的延时,和触发一次测量.

:SOURce <name>

```
命令语法: :TRIGger:SOURce <name>
```

参数	<name> = IMMediate</name>	内部触发,是仪器的默认设置
	BUS	被RS232 接口触发
	MANual(EXTernal)	在面板按 🛄 键触发
查询	:SOURce?	查询当前的触发模式
功能	该命令用于设置仪器的触发模	式。

6.3.6 FETCh 子系统命令

FETCh? 命令

命令语法: :FETCh?

功能: 这个查询命令获得仪器的最新处理的读数。该命令不影响仪器 的设置。该命令仅仅得到最新的有效读数。注意:这个命令能 够重复的得到同一个读数,直到仪器得到一个新的读数。 当:READ?或:MEASure?命令发送后,这个命令自动地插入。

6.3.7 共命令

公共命令是在所有设备上都可以使用的仪器命令。本仪器提供以下几种公 用命令。

*RST

- 命令语法: *RST
- 功能 当该命令用于对仪器进行复位。

*TRG

命令语法: *TRG

功能 该命令用于触发仪器测量。

*IDN?

查询语法: *IDN?

查询返回: <product>, <version><LF^END>

这里:

for the second se

功能 该命令用于查询返回仪器信息。

附录 A

技术指标

介绍

附录 A 主要讲述了 TH2281/A/B 数字交流毫伏/功率表的所有技术指标说明。

技术说明

- 技术指标假定
 - 一年的校准周期
 - 操作温度环境:在 18℃~28℃。

• 精确度的表示: ± (2% of reading + 190digits), 在 30 分钟的开机预热 条件下。

• 温度系数: 0℃~18℃及 28℃~40℃ 增加±0.1%×准确度/℃

- 工作湿度环境:在0℃~28℃,≤80%RH, 在28℃~40℃,≤70%RH;
- 显示读数和读数速率

满量程显示读数:

Slow	Med	Fast
38000	38000	3800

● 测量电压的频率响应误差(100KHz 基准)与驻波系数(VSWR):

I.信号输入单元为同轴检波器时

•	9kHz~200MHz	±(读数值的 4%+满量程的 0.5%)	VSWR: 1	.04
•	200MHz~1GHz	土(读数值的 6%+满量程的 0.5%)	VSWR:	1.06
•	1GHz~1.6G Hz	±(读数值的 8%+满量程的 0.5%)	VSWR:	1.14
•	1.6GHz~2GHz	±(读数值的 10%+满量程的 0.5%)	VSWR:	1.26
•	2GHz~2.5GHz	土(读数值的 12%+满量程的 0.5%)	VSWR:	1.35
•	2.5GHz~3GHz	±(读数值的 14%+满量程的 0.5%)	VSWR:	1.40
Ⅱ.信号	导输入单元为电压	探头时		
•	9kHz~200MHz	±(读数值的 4%+满量程的 0.5%)	VSWR:	1.10
•	200MHz~800MH	Iz ±(读数值的 8%+满量程的 0.5%)	VSWR:	1.30
•	800MHz~1000M	Hz ±(读数值的 10%+满量程的 0.5%)	VSWR:	1.35
•	1000MHz~1200M	MHz ±(读数值的 12%+满量程的 0.5%)	VSWR:	1.44

触发和存储器

读数保持误差范围:读数的 0.01%, 0.1%, 1% 或 10% 可编程触发延时: 0~6000ms (以 1ms 为步进) 存储器:可存储 512 个读数

数学功能

相对运算(Rel),最大/最小/平均/标准偏差(存储读数),dBm,dB,极限测试(Limit Test),%,和 Vpp.

dBm 参考电阻值:可自行设定1Ω~9999Ω(以1Ω为步进),默认为50Ω。

标准程序语言

SCPI (Standard Commands for Programmable Instruments)

远程接口

GPIB (IEEE-488.2) 和 USB/RS-232C

一般技术指标

电源要求: 220V±10% 电源频率: 50/60Hz±5% 电源功耗: ≤20VA 工作环境: 0℃~40℃, ≤90%RH, 储存环境: -40℃~70℃ 热机时间: 至少 30 分钟 体积(W×H×D): 225mm×100mm×315mm 重量: 约 2.5 Kg 保修期:二年

附录 B

程序举例

串行接口程序

以下范例是以 C 语言编制的在纯 DOS 环境下运行的通讯程序,其中的 main 函数可以由用户任意扩展通讯功能,而其它子函数则示例了如何使用串行口进行字串的输入与输出。

```
#define PORT 0
#include "dos.h"
#include "stdio.h"
#include "stdlib.h"
#include "ctype.h"
#include "string.h"
#include "conio.h"
void port_init( int port, unsigned char code );
void send_port( int port, char c );/* send a character to serial port */
char read port( int port ); /* recive a character form serial port */
void string_wr( char *ps );  /* write a string to serial port */
                           /* read a string from serial port */
void string rd( char *ps );
                                 /* quary recieve bufer */
char input [256];
main()
{ port init( PORT, 0xe3 ); /* initilize serial port:baud = 9600, no verify, 1
                         bit stop, 8 bit data */
 string wr( "trig:sour bus;*trg" );
 string rd( input );
 printf( "\n%s", input );
 string wr( "volt:dc:rang 1.0" );
```

```
string_wr( "func 'volt:ac');
}
/* write string to serial port */
void string wr( char *ps )
{ char c;
  int m, n;
  while( check stat(PORT) & 256) read port(PORT);/* read data until null
*/
  for( ;*ps; )
  \{ c = 0; \}
    for (m = 100; m; m--)
    { send port( PORT, *ps );
      for( n = 1000; n; n-- )
      { delay(2); /* wait about 2ms, can use dos.h libray funtion:delay */
        if(kbhit() && (getch() == 27)) /* if escape key keypress */
        { printf( "\nE20:Serial Port Write Canceled!" );
          exit(1);
        }
        if( check stat(PORT) & 256 )
        { c = read port( PORT );
          break;
        }
      }
      if(n) break;
    }
    if( c == *ps ) ps++;
    else
    { printf( "\nE10:Serial Port Write Echo Error!" );
      exit(1);
   }
  }
  send port( PORT, '\n' );/* send command end symbol */
  delay(2);
  while( !(check stat(PORT) & 256) );
  read_port( PORT );
}
```

```
附录 B
```

```
/* read string from serial port */
void string rd( char *ps )
{ unsigned char c, i;
  for( i = 0;i < 255;i++ ) /* max read 256 characters */
  { while( ! (check_stat(PORT) & 256) ) \ /* wait serial recieve ready */
    if(kbhit() && (getch() == 27) ) /* if escape key keypress */
    { printf( "\nE21:Serial Port Read Canceled!" );
      exit(1);
    }
    c = read port( PORT );
    if ( c = ' \setminus n' ) break;
    *ps = c;
    ps++;
  }
  *ps = 0;
}
/* send a character to serial port */
void send port( int port, char c )
{ union REGS r;
  r.x.dx = port;
                        /* serial port */
                        /* int14 function1:send character */
  r.h.ah = 1;
  r.h.al = c;
                         /* character to be sent */
  int86( 0x14, &r, &r );
  if(r.h.ah&128) /* check ah.7, if set by int86(0x14,&r,&r), mean trans
                        error */
  { printf( "\nE00:Serial port send error!" );
    exit(1);
  }
}
```

```
/* read a character from serial port */
char read port( int port )
{ union REGS r;
 r.x.dx = port; /* serial port */
 r.h.ah = 2;
                     /* int14 function2:read character */
 int86( 0x14, &r, &r );
 if (r.h.ah & 128) /* if ah.7 be set, mean trans error */
  { printf( "\nE01:Serial port read error!" );
   exit(1);
 }
 return r.h.al;
}
/* check the status of serial port */
int check stat( int port )
{ union REGS r;
 r.h.ah = 3;
                     /* int14 function3:read status */
 int86( 0x14, &r, &r );
 return r.x.ax; /* ax.7 show serial operation, ax.8 show serial
                       recive ready */
}
/* initialize the serial port */
void port init( int port, unsigned char code )
{ union REGS r;
 r.x.dx = port; /* serial port */
 r.h.ah = 0;
                   /* int14 function0:initial serial port */
 int86( 0x14, &r, &r );
}
```