合成函数信号发生器

SFG-1000 系列

操作手册 ^{固纬料号:} 82FGB10030MB1

ISO-9001 CERTIFIED MANUFACTURER

这本手册所含之全部文字与图片是受到智能财产权的保护,版权 属固纬电子实业股份有限公司所拥有。在这本手册内之任何章节 及图片不得在没有固纬电子实业股份有限公司授权之下做出任何 之复制、重组或是翻译成其它之语言。

这本手册所叙述之内容与图片在印制之前已经完全校正过。但因 固纬电子实业股份有限公司不断地改善产品之质量、特性,固纬 电子实业股份有限公司有权在未来修改产品之规格、特性及保养 维修步骤时,不必事前通知。

固纬电子实业股份有限公司

台湾省台北县土城市中兴路7之1号

安全说明		5
	安全标志 安全指导	5 5
使用前注意事	事项	
	技术背景	9
	系列/特色	11
	前面板	12
	后面板	16
	安装	17
	操作捷径	19
正弦波/方波	/三角波	20
正弦波/方波	/三角波 产生波形	20
正弦波/方波	/三角波 产生波形 设置频率	
正弦波/方波	/三角波 产生波形 设置频率 设置振幅	
正弦波/方波	/三角波 产生波形 设置频率 设置振幅	
正弦波/方波	/三角波	
正弦波/方波	/三角波 产生波形 设置频率 设置振幅 设置占空比(方波) 设置偏置	20 21 21 23 24 24 24 24
正弦波/方波/ TTL 输出	/三角波	20 21 21 23 24 24 26 26
正弦波/方波/ TTL 输出	/三角波	20 21 21 23 24 24 26 26 26 27

PA 输出(SFG-	1023)	. 29
	设置 PA	29
	设置频率	30
应用事例		. 31
	PLL 系统的参考信号	31
	发现并检修有故障的信号源	31
	晶体管直流偏压特性测试	32
	放大器过载特性测试	33
	放大器瞬态特性测试	33
	逻辑电路测试	35
	阻抗匹配网络测试	35
	喇叭驱动测试	36
常见问题解答		. 37
附录		. 38
	保险丝的替换	38
	错误信息	40
	产品规格	40
	版权	42
索引		. 43

安全说明

本章节包含了重要的安全注意事项,当操作 和储存 SFG-1000 系列仪器时,必须遵循这些 事项。为保证安全,请在任何操作之前阅读 以下事项,保证仪器在最好的工作状态。

安全标志

这些安全标志可能出现在这本手册或 SFG-1000 系列仪器中。

⚠️ 警告	警告:表示某一特定的环境或操作可能会导致人员 伤害甚至失去生命。
⚠ 注意	注意: 表示某一特定的环境或操作可能会损坏 SFG-1000 系列仪器或其它产品。
<u> </u>	注意参考这本手册。
<u> </u>	接地端

安全指导

一般情况	• 不要在 SFG-1000 系列仪器上放任何重的物体。
^	• 避免剧烈碰撞或操作导致损坏。
⚠ 注意	•不要释放静电到 SFG-1000 系列仪器上。
	•终端仅使用配对连接器。
	• 禁止阻塞或隔断冷却器的通风口。
	• 禁止在电源与安装位置处测量 (注解如下)。

• 除专业维修人员外,禁止拆开 SFG-1000 系列仪器

	(注意) EN 61010-1: 2001 指定测量种类如下:
	SFG-1000 系列采用以下测量种类 II。
	测量种类 IV 是在低电压源装置下的测量。
	测量种类 III 是在建筑装置下测量。
	测量种类 II 是在直接连接低电压装置的回路中测
电源供应	• 输入电压: 100/120/220/240V AC ±10%, 50/60Hz
\mathbf{A}	(工厂安装固定的额定电压)。
/↓_ 警告	• 电源供应器的电压波动率不能大于 10%。
	•为避免电击,电源线的保护接地端子应连接到地
保险丝	 保险丝种类:
\mathbf{A}	SFG-1003/1013
/↓\ 警告	T0.16A / 250V (额定值为 220V/240V±10%),
	T0.315A/ 250V (额定值为 100V/120V±10%)。
	SFG-1023
	T0.3A / 250V (额定值为 220V/240V±10%),
	T0.6A/250V(额定值为100V/120V±10%)。
	•为了持续的防火,替换保险丝只能用指定型号与
	额定值,对于保险丝替换的细节请参见38页。
	• 保险丝替换前请先断开电源。
	• 更换保险丝前务必要确定保险丝烧断的原因。
 清洗 SFG-1000	· 清洁前请断开由源线。
系列	• 以温和的洗涤剂和清水沾湿柔软的布擦拭仪器。
/1// 1	不要喷溅任何液体到 SFG-1000 系列上。
	- 不要用化学制品或句含有加苯甲苯二甲苯和丙酮
	• 不安而化于两面或已百日如本,不本,二个本面内的
冱仃坏境	• 位直:至内,避免阳光直射,尤尘,儿子没有磁场十扰
	(注息如下)。
	• 相 灯湿 度< 80%
	• 局度: < 2000m
	• 温度: 0℃ to 40℃

(注意) EN 61010-1: 2001 详细说明了污染度和它们的要求如下。SFG-1000 系列在污染指数 2 以下。污染指数指出了附着的杂质,固体,液体,或气体(电离的气体),可能会导致绝缘度或表面电阻系数的降低。

- 污染度数 1: 没有污染或是仅有干燥的,无传导的污染发生时,这种污染没有影响。
- 污染度数 2: 通常仅无导电污染发生,然而由于浓缩引起的暂时性传导必须被考虑。
- 污染度数 3: 传导污染发生或者干燥,没有传导污染发生时由于浓缩被预料变成可导,在这种环境下,装备通常是受保护的以免在暴露中受阳光直射,强大的风压,但是温度和湿度都不被控制。
- 存储环境 位置: 室内
 - •相对湿度: < 70%
 - 温度: −10°C 到 70°C

英式电源线

当我们在使用 SFG-1000 系列的时候,确保电源线符合如下安全规范。

注意: 这个装置必须由专业人员接线。

批线

/!]]警告:这个装置必须接地。

重要:这个装置的导线所标的颜色必须与如下代码一致。

绿色/黄色:

蓝色: 棕色: 零线 火线(相线)

OE	
0 00	
N	

在许多装置中由于线的颜色可能与你的设备中标识的不一致,如下继续进行:颜色为绿色和黄色的线必须接用字母标识为 E,有接地标志。颜色为绿色或绿色和黄色的接地端。

颜色为蓝色的线必须连接到用字母标识为 N,颜色为蓝色或黑色的一端。

颜色为棕色的线必须连接到用字母标识为L或P或颜色为棕色或红的一端。 如果还有疑问,参考设备的用法说明书或联系供应商。

这个电缆装备应该被有合适额定值的和经核准的 HBC 部分保险丝保护,参考设备的额定信息和用户用法说明书的详细资料,0.75mm 的电缆应该被一个 3A 或 5A 的保险丝保护,按照操作,大的导电体通常要 13A 的型号,它取决于所用的连接方法。任何包含需要拿掉或更换的连接器的模具,在拿掉保险丝或保险丝座的时候一定被损坏,带有露出线的插头当插到插座里的时候是危险的,任何再接的电线必须要于以上标签相符。

使用前注意事项

本章节描述了 SFG-1000 系列外观,包括主要特色,前后面板及显示说明。依照如下步骤正确安装并且 启动 SFG-1000 系列。

SFG-1000	技术背景9		
系列概况	系列	11	
	主要特色	11	
面板说明	主要显示	12	
	输入键	13	
	其它	14	
	后面板	16	
安装	倾斜支架	17	
	输入电源	18	
	功能性检查	18	
快速参考	操作捷径	19	

技术背景

传统信号发生器 SFG-1000 系列采用了最新的直接数字合成(DDS)技术,产生了稳定的且高分辨率的输出频率。DDS 技术 解决了传统信号发生器所遇到一系列的问题,如下所 述。

恒流源电路技术

模拟信号产生方法是采用如电容和电阻等独立的元件组成的恒定的电流源电路。发生器内部温度的改变就会很大地影响元件的特性,从而导致输出频率的改变,结果既不精确也不稳定。

DDS 技术 DDS 技术中,波形数是在存储器中并由它产生,时钟 控制指向数据地址的计数器。存储器输出信号由带 有低通滤波器的数字-模拟转换器(DAC)转换成模拟 信号。该分辨率的表达式为 fs/2^k, fs 表示频率, k 表 示控制字节,它能包含超过 28 bits 的字节。因为频率 的产生与时钟信号有关,它能达到更高的频率并且比 传统的信号发生器要稳定,分辨率要高。

结构图
 DDS 频率合成器包含相位累加器(counter)、数值表
 (lookout table, 一般为 ROM), D/A 转换器(DAC),
 和低通滤波器(LPF)。

累加器的"和"由频率控制字(K)控制,在每一系统频 率周期(1/fs)后加 K。累加器的输出用于寻址数值表 (ROM 或 RAM)中的数据。通过 DAC,数字数据会转 换成阶梯状的模拟波形,接着由 LPF 將此阶梯状平 滑化,形成纯粹的正弦波。

系列/特色

T	ЪÌ
禾	<i>/</i> /
/J \	/ .

系列	特色	频率	偏置	TTL 输出	-40dB 衰减器	电压 显示	PA 输出
SFG-1003		3MHz	•	•	٠		
SFG-1013		3MHz	•	•	•	•	_
SFG-1023		3MHz	•	•	•	•	•

主要特色

性能	 采用 DDS 技术而得高分辨率 高频率精确度: ±20ppm 低失真度: -55dBc @ ≤200kHz 高分辨率: 100mHz
特色	 采用六位 LED 数字显示的用户界面 波形:正弦波,方波,三角波 TTL 输出 振幅控制 -40dB 衰减 占空比控制 可变直流偏压控制 輸出开关控制 电压显示(SFG-1013/1023) 输出过载保护
界面	 ・频率输出 ・TTL 输出 ・PA 输出(SFG-1023)

前面板

主要显示

7 段 LED	/_/ /_/.	显示频率和电压
TTL 指示器	TTL	指示 TTL 输出是否动作。详细介 绍查看26页。
波形指示器	\sim L \sim	指示输出波形:正弦,方波和三角 波。
频率指示器	M k Hz	指示输出频率,单位为 MHz, kHz, 或 Hz。
电压单位 (SFG-1013/1023)	m V	指示电压单位:mV或V,关于 电压测量细节,请参考23页。
- 40dB 指示器 (SFG-1013/1023)	-40dB	指示-40dB 衰减器是否动作, 详细情况,请参考23页。
PA 指示器 (SFG-1023)	ΡΑ	指示 PA 输出是否开启,详细情况,请参考29页。

输入键

波形键	WAVE	选择波形:正弦,方波,和三角 波,详细情况请参考20页。
产生 TTL		开启 TTL 输出,详细情况请参 考26页。
数字键		输入频率。
频率单位选择		选择频率单位: MHz, kHz,或 Hz
	KHz Hz (9, 0)	
光标选择		左右移动光标,修正频率数值 位置,详细情况请参考 22 页。
	4 or 5	
- 40dB 衰减 (SFG-1013/1023)	-40dB SHIFT → 3	调节衰减振幅为 -40dB,详细 情况请参考23页。该键的操作 适用于 SFG-1013/1023。
频率/电压显示 选择 (SFG-1013/1023)	V/F •	在频率和电压间可切换显示, 详细情况参考23页,适用于 SFG-1013/1023。
产生 PA (SFG-1023)	$\begin{array}{c} \text{PA OUT} \\ \text{SHIFT} \rightarrow 6 \end{array}$	开启 PA 输出,详细情况参考29 页
Shift 键	SHIFT	选择输入键的第二功能键,当按 下 Shift 键时,LED 灯就会亮。

输出开/关键 输出 ON/OFF 切换,当输出键 状态为 ON 时,LED 灯亮。 OUTPUT ON 其它 增大(顺时针旋转) 或 频率调整旋钮 减小(逆时针旋转)频率。 主输出 输出正弦,方形和三角形波 BNC (同 OUTPUT 50Ω 轴电缆接插件)。50Ω的输出阻抗, 详细介绍参见21页。 TTL 输出 输出 TTL 波形, TTL OUTPUT BNC(同轴电缆接插件)终端。 TTL 模式详细介绍参见26页。 PA 输出 输出PA 波形, PA OUTPUT (SFG-1023) BNC(同轴电缆接插件)终端。 PA 模式详细介绍参见29页。 设定正弦波,方波或三角波的幅度, 振幅控制 AMPL 逆时针旋转(减少)或 顺时针旋转 (增加) MIN • • MAX -40dB (仅适用于 SFG-1003), 当拉起此钮时 ,正弦波,方波或三角波的振幅将被 衰减-40dB。详细介绍参见23页

C 偏置控制	OFFSET	当拉起按钮,设置正弦波,方 波和三角波形的直流偏压范围。 逆时针旋转(减少)或 顺时针旋转(增加)。 加 50Ω 负载时,范围在-5V~+5V之 间。详细介绍参见24页。
室比控制	DUTY ADJ	当拉起此钮时,可以在 25% 到 75%范围内调整方波或 TTL 的 Duty。逆时针旋转(减少)或顺时针 旋转(增加)。详细介绍参见24页 (方波)或第28页(TTL)。
1.源开关	POWER	切换主电源 On/Off,关于电源供给 顺序,参见18页。
	\bigcirc	

后面板

 交流电压额定值
 SFG-1000
 系列有固定的电源线电压: 100V,120V,

 信息
 220V, 或 240V (由工厂安装设置)。这个标签显示了

 可用的额定电压值。

交流电压输入 连接交流电源线 100V,120V, 220V,或 240V, ±10%, 50/60Hz

接地端 安全接地端,把这个端口与公共接地端相连。

安装

操作捷径

正弦波 250Hz	1.	按下波形键,选择正 弦波	WAVE 🔨
	0		
-400B 旅幅	2.	按下2+5+0+Shift	
OUTPUT		+0(Hz)键。	
5012	3.	(SFG-1003) 按下输出	AMPL
		键同时拉出振幅旋钮	
\swarrow	4	(SEC 1019/1099)	
-	4.	(JFG-1013/1023) 	
		按下制出键, 按下	ON SHIFT 3
		Shift + 3 (-40dB) 键。	
三角波 8kHz,	1.	按下波形键选择三角	
→ // 偏置		波 一 成 / / 灰 之 (二 二 / 二 / 二 / 二 / 二 / 二 / 二 / 二 / 二 /	WAVE 🔨
	9		
50 Q	۵.	$1 \overline{y} \upharpoonright 0 + \text{SIIIII} + 0$ (111) / / / / / / / / / / / / / / / / / /	
$\hat{\mathbf{A}}$		9(KHZ) 铤。	
	3.	按下输出键,然后拉	OFESET
		出偏移量旋钮并旋转	OFFSET
方波 1MHz,	1.	按下波形键并选择方	
45% 占空比		波。	WAVE
	2	 按下 1 + Shift +	MHz
50Ω	~.	100 日 - 100 日 2010日 - 2010日 - 20100 - 20100 - 20100 - 201000 - 2010000000000	
		0(I/IΠΖ) 键。	
\bigcirc	3.	按下制出键,然后拉	עדו וס
		出占至比旋钮并旋转	
• <u>-</u>			
TTL 输出 10kHz			
TTI	1.	按下输出键。	
OUTPUT	9		
	۵.		SHIFT WAVE
\mathbb{M}		(IIL) 挺。	
	3.	按下 1 + 0 + Shift +	
\checkmark =		9(kHz)键。	

正弦波/方波/三角波

选择波形	产生波形	21
设置频率	输入频率	21
	编辑频率	22
	最大频率限制错误	22
	最小频率限制错误	22
设置振幅	设置振幅	23
	观察幅度(SFG-1013/1023)	23
	-40dB 衰减	23
设置占空比 (方波)	调节占空比	24
设置偏置	产生偏置	24
	调整偏置	24
	限制	25

- 产生波形
- 正弦波/方波 WAVE /三角波
- 重复按下波形选择键就会在显示器中显示相应的波形。

0

OUTPUT ON

> 波形从主端口输出。 振幅为 10Vp-p(接 50 Ω 负载时)。 振幅为 20Vp-p(不接负载时)。

设置频率

设置振幅

振幅调整不应用于 TTL 输出 (参见26页)。

设置占空比(方波)

占空比设定不适用于正弦波与三角波

设置偏置

偏置的设定不适用于 TTL 输出(参见26页)

产生偏置	SFG 能领 ,从而改	SFG 能够对正弦波,方波,三角波增加或减少偏移量,从而改变波形的电压偏移量。			
		拉出偏移量旋钮以打开偏移量的设置。			
调整偏置	OFFSET	顺时针旋转此按钮(增大位置),逆时针旋转此按钮(减小位置)。			
范围	$-5V \sim +5$	5V 对于 50 Ω 负载输出。			

限制

注意输出振幅包括偏置仍然限制在:

-5~+5V (50Ω 负载)

-10~+10V(没有负载)

因此过多的偏置会导致波峰失真,如下所示。

TTL 输出

产生 TTL	产生 TTL	26
设置频率	输入频率	27
	编辑频率	27
	最大频率限制错误	28
	最小频率限制错误	28
设置占空比	调节占空比	28

产生 TTL

设置频率

GWINSTEK

全部错误信息列表,参见40页。 最大频率 限制错误 TTL TTL 频率的最大值为 3MHz, 当输入超过它时就会显示错 误信息(Err-1),并强制使频率 变为 3MHz。 全部错误信息列表,参见40页。 最小频率 限制错误 Err - '-' 最小频率为 0.1Hz, 当输入频 率小于 0.1Hz 时, 就会显示错 误信息(Err-4),并强制使频率 变为 0.1Hz。 设置占空比

调节占空比	ADJ	1.	拉出占空比旋钮,顺时针(逆时针)来增加(减小)占空比,初始值设置为50%。
		2.	按下占空比旋钮,占空比恢复 设定值为 50%。
范围	25% ~ 75%		

PA 输出(SFG-1023)

设置 PA	产生 PA	产生 PA29		
	选择波形	29		
	设置振幅			
设置频率	输入频率	30		
	编辑频率	30		
	频率设定超限错误	30		

设置 PA		
产生 PA	OUTPUT ON	1. 按下输出键,LED 灯亮(只 有输出在 ON 状态下时,PA 才会开启)。
	PA OUT SHIFT → 6	 按下 Shift 键, 然后按下 6 键 PA 指示灯将会出现在显示 屏上。
		3. 波形产生于 PA 输出端, 幅度: ≥12.65Vp-p(正弦波)。
选择波形	WAVE	重复按下波形选择键改变 PA 输 出的波形,同时在显示器中显示 相应的波形符号。
设置振幅		顺时针旋转旋钮,增大振幅 逆时针旋转旋钮,减小振幅

设置频率

应用事例

PLL 系统的参考信号

在锁相环系统中,只需直接把 SFG 输出与 PLL 输入 相连, SFG 输出就可被用作一个很有效的参考信号

描述

发现并检修有故障的信号源

描述 SFG 输出可以被用作信号源,用于测试回路系统中 有故障的部分,隔离可疑部分, SFG 输出作为激励源 供给,并可用示波器观察输出结果。

G^W**INSTEK**

0

0

晶体管直流偏压特性测试

描述 用 SFG-1000 系列作为晶体管的信号源,用示波器比 较晶体管的输入输出波形,调整直流电压源找出没 有失真时的最大输出。

> SFG 系列 示波器 8888 © 0 - 88 - 0 000000 0 000 ė ò -V+ 输出 输入

> > 晶体管

结构图

放大器瞬态特性测试

描述

在这种情况下,普通的正弦波不是理想的信号源,所 以用 SFG-1000 系列的方波输出去检查放大器的频 率响应,并观察示波器的波形。

测试步骤	 首先用三 幅确保波形 然后选邦 初,如 20Hz 3.观察放大 真和它们太 	三角波作为放大器的输入,调整波形的振 >没有失真。 ¥方波,调整它的频率到通频带宽度的中 , 1kHz, 和 10kHz。 器的输出波形,下表展示了可能的输出失 j应的解释。
瞬态特性列表		 低频振幅减小 无相位抖动
		•低频放大(增强基谐波)
	Ŋ	 高频损耗 无相位抖动
		 低频相位抖动 由于干扰电压使轨迹变得复杂
		 高频损耗 相位抖动
		 低频损耗 相位抖动
	\searrow	 低频损耗 低频相位抖动
	$\overline{\mathbf{v}}$	 高频损耗 低频相位抖动
		• 阻尼振荡

对于窄带放大测试,方波可能不适用。

注意

逻辑电路测试

描述用 SFG-1000 系列的 TTL 输出测试数字电路,并用示 波器观察输入输出信号的时间关系。

阻抗匹配网络测试

喇叭驱动测试

描述用 SFG-1000 系列测试喇叭声音的频率特性,记录电压读数并与输入信号频率相对应。

曲线图

峰值电压产生与喇叭的共振频率处。

常见问题解答

- 我在前面板上按电源开关但是什么反应也没有。
- TTL 产生不了 (按下 Shift + Wave 键)
- 装置的精确度与说明书上的不相符?
- 这些错误信息是什么意思?

我在前面板上按电源开关但是什么反应也没有。

确保直流电源电压设置为额定值±10%,50/60Hz。对于电源供给次序参见18页,或则内部保险丝可能烧掉,对于更换保险丝,参见38页。

TTL 产生不了 (按下 Shift + Wave 键)

你必须首先打开输出,按下输出键,然后按下 Shift+Wave,详情参见26页。

我怎样获得 TTL/-40dB 模式?

对于 TTL: 按下 Shift 键, 然后再按下 wave 键, 详 情参见26页。

对于-40dB 模式, 按下 Shift 键, 然后按 3。详情参见23页。

装置的精确度与说明书上的不相符?

确保设备在环境温度+18℃到+28℃范围内开启时间 不少于 30 分钟,这点是保证各功能符合产品规格所 必需的。

这些错误信息是什么意思?

当使用不正确的方法去设定频率时,一些错误信息 将会显示。40页总结了这些错误信息。

如果还有其它问题,请与当地经销商联系,或登陆公司网站与固纬公司联系。公司网站 <u>www.gwinstek.com.tw/marketing@goodwill.com.cn</u>。

附录

保险丝的替换

1.卸下把手为了从仪器中分离把手,首先把把手向下旋转 **90** 度, 然后向一侧拉它。

2.卸下盖子 在把手结点处取下两个金属固定片,然后取下后面板 顶上的螺丝。

向后侧滑动上面的壳然后取下上盖。

3. 替换保险丝 替换下印制电路板后部的被烧毁的保险丝。

保险丝额定值	SFG-1003/1013	
	AC 100/120V	T0.315A/250V
	AC 220/240V	T0.16A/250V
	SFG-1023	
	AC 100/120V	T0.6A/250V
	AC 220/240V	T0.3A/250V

错误信息

频率错误	Ēr	ı
	Err-1	正弦,方波和 TTL 波的频率超过最大允 许输入,输入正弦波,方波和 TTL 频率 超过 3MHz,此错误信息将会显示,并 且使频率自动变为 3MHz。
	Err-2	三角波频率超过最大允许输入,当输入 三角波频率超过 1MHz,此错误信息将 会显示,并且使频率自动变为 1MHz。
	Err-4	从按键输入的频率超过分辨率。当输入 频率小于 0.1Hz,此错误信息将会显示, 并且使频率自动变为 0.1Hz。
	Err-5	当 PA 输出开启时,频率设定值小于 10Hz 或大于 100kHz 时,此错误信息将 会显示,并且自动将 PA 输出关闭。

产品规格

• SFG 系列必须在环境温度在+18℃到+28℃范围内开启时间不少于 30 分钟以符合产品规格。

	输出波形	正弦波,方波,三角波
	振幅	10Vpp (50 Ω 负载)
	振幅准确度	±20% 振幅控制的最大位置 (SFG-1013/1023)
主输出	阻抗	50 $\Omega \pm 10\%$
	衰减	−40dB±1dB x 1
	直流偏置	< −5V ~ >+5V (50 Ω 负载)
	占空比范围	25%~75%, ≤1MHz (方波)
	显示	6 digits LED 显示

	正弦波/方波 频率范围	0.1Hz ~ 3MHz	
频率	三角波频率范围	0.1Hz ~ 1MHz	
	分辨率	0.1Hz	
	稳定率	±20ppm	
	精确度	±20ppm	
	老化度	±5ppm/年	
正弦波	谐波失真	 ≥-55dBc, 0.1Hz ~ 200kHz ≥-40dBc, 0.2MHz ~ 2MHz ≥-35dBc, 2MHz ~ 3MHz (从振幅控制最大位置到 1/10 振幅位置,没有衰减设定,TTL 关闭,PA 关闭) 	
	振幅平坦度	< ± 0.3dB, 0.1Hz ~ 1MHz < ± 0.5dB, 1MHz ~ 2MHz < ± 1dB, 2MHz ~ 3MHz (对应于正弦波 1kHz,振幅最大)	
三角波	线性	≥ 98%, 0.1Hz ~ 100kHz ≥ 95%, 100kHz ~ 1MHz	
方波	对称度 上升和下降时间	±5% 周期 + 4ns, 0.1Hz ~ 100kHz ≤ 100ns (50Ω 负载,振幅最大)	
TTL 输出	幅度 带负载能力 上升和下降时间	≥ 3Vpp 20 TTL 负载 ≤ 25ns	
PA 输出 (SFG-1023)	输出波形	正弦波、方波和三角波	
	频率范围	10Hz ~100kHz	
	输出功率	≥ 5W (4 Ω 负载,正弦波)	
一般说明	电源	交流 100/120/220/240V ±10%, 50/60Hz (线电压由工厂安装时设置)	
	运行环境	室内使用,海拔高度最大为 2000m 周围温度 0~40℃ 相对湿度 ≤ 80%,0~40℃ 安装种类 II / 污染指数为 2	
	储藏环境	温度 −10 ~ 70℃ 湿度 ≤70%	
	附件	操作手册 x 1 GTL-101 x 1	
	尺寸	251(W)x 91(H)x 291(D) 251(W)x 91(H)x 315(D)	(SFG-1003/13) (SFG-1023)
	重量	大约 2.1kg 大约 2.83kg	(SFG-1003/13) (SFG-1023)

版权

关于我们 **固纬电子实业股份有限公司。** (1) 台湾省台北县土城市中兴路7之1号。 (2) 中国江苏省苏州市鹿山路69号。 声明以下提及产品: 产品类型:合成函数信号发生器 型号: SFG-1003, SFG-1013 确认函所遵从指示所载理事会关于成员国逼近法与电磁兼容。 (89/336/eec,92/31/eec,93/68/eec)、低压指令(73/23/eec,93/68/eec)。对 于评价为低电压指令和电磁兼容,适用下列标准:

◎电磁兼容性

EN 61326-1:测量电气设备、控制及实验室使用所需的。				
EMC(1997+A1 级: 1998+为 A2:2001+A3 级: 2003)。				
辐射 EN55011: 1998+A1 级:	静电放电			
1999+ A2: 2002	EN 61000-4-2: 1995 + A1: 1998 + A2			
	: 2001			
谐波电流	放射免疫性			
EN 61000-3-2: 2000 + A2: 2005	EN 61000-4-3: 2002 + A1: 2002			
电压波动	电气快速瞬态			
EN 61000-3-3: 1995 + A1: 2001	EN 61000-4-4: 2004			
+ A2: 2005				
	抗电击度			
	EN 61000-4-5: 1995 + A1: 2001			
	导电磁化系数			
	EN 61000-4-6: 1996 + A1: 2001			
	电源频率磁场			
	EN 61000-4-8: 1993 + A1: 2001			
	电压骤降/中断			
	EN 61000-4-11: 2004			

◎安全

低电压设备指示 73/23/EEC 并由 93/68/EEC 赔偿。	
安全要求	
IEC/EN 61010-1: 2001	

索引

4

40dB attenuation	
faq	37
Α	
amplifier application example	33
С	
caution cumbol	5

D

default display18
digital direct synthesis
block diagram10
direct digital synthesis9
display contents overview12
duty cycle
faq 37
sine/square/triangle24
TTL28
Ε
EN55011
EN61010
declaration of conformity42
measurement category6
error message
error222
summany 40
Summary

FAQ	37
feature list	. 11

frequency editing
sine/square/triangle21
TTL27, 30
frequency faq37
front panel key overview13
fuse
rating 39
replacement38
safety instruction6
G
ground terminal
location16
symbol5
I
impedance application example35
in/out terminal overview14
L
logic application example35
0
offset24
operation shortcut19
Р
peak clip25
PLL example application31
power up sequence18
faq37
R
rear panel overview16

S

setup step17
sine wave
example setting19
selection21
speaker application example
specification40
FAQ37
square wave
example setting19
selection21
storage environment
specification41
Τ
table of contents 3
tilt stand17

transistor application example	32
triangle wave	
example setting	19
selection	21
troubleshooting example	31
TTL	
activation	26, 29
example setting	19
U	
UK power cord	7
V	
voltage viewing	23
W	
warning symbol	5